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Abstract 

A distributed parameter model for a class of 
search and capture problems In the plane Is derived. 
The output Is a time-varying simple loop In R2 and the 
Input a moving line segment. The applications dis- 
cussed Include destroyer search, oil spill clearance, 
forest fire control and fishing. Circular motion Is 
shown to produce a non-trlvlal steady-state region 
whenever the velocity ratio between searcher and 
evader attains a computed critical value. 

Introduction 

Suppose that we wish to carry out a search In the 
plane, R2, with the visible points at time t being a 
line segment of fixed length d attached to a moveable 
origin 0.  (See Figure l-a.) The search might begin 
with a rotation of "the line of sight" as Indicated in 
Figure l-b. 

(0) 

Fig.   I  Starting the search 

The objective is 
vicinity of 0 whi 
a given number B 
the  Iine ot sight 
detected then we 
present  In the cl 
Notice that the c 
searched region s 
about. 

to search for evasive objects  In the 
ch have speed known to be bounded by 
> 0.     If after a steady rotation of 

by 560° no evaders have been 
can be assured there are no evaders 
ear region  indicated  In Figure 2. 
lear region  is a proper subset of the 
ince the objects sought can move 

If the search were now terminated the clear region 
would tend to contract.    To counter this tendency with 
the hope of eventually expanding the clear region the 
searcher might proceed with some combined motion of 0 
and the  Iine of sight.    The partial  differential  equa- 
tion derived  In this paper provides a mathematical 
foundation for studying the relative merits of such 
search procedures. 

Other game-theoretic problems to which the model 
also applies are discussed In the later sections. A 
problem In which the searcher moves along a circular 
path  Is studied in some detail. 

Some reflection upon the nature of the search 
situation presenting  Itself  In Figure 2 suggests that 
the appropriate choice for the state of the system 
might be a time-varying loop bounding the searched-and- 
clear region.    The control   Input will  be the moving 

Fig.  2 The searched-and-clear region 
assuming no detection has occured 

straight  line segment extracted from the  line of sight 
by Intersection with the  loop.    This segment will 
hereafter be called the control or Input segment. 

Derivation of the model 

To each simple loop of the type eluded to wt 
attach coordinates In the manner Indicated  in Flaure 3. 

Fig.  3 Assignment of system coordinates 

Looking at the loop at time t first locate the control 
segment which, when extended, penetrates the Interior. 
Along this extended  line select an origin 0.    The 
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state of the system. I.e. the loop, can then be 
described by a function p{t,^) where ^ Is the Indi- 
cated angular coordinate. To describe the motion of 
the control segment a control point such as the center 
Is selected along It. The radial distance to the end 
of the loop nearest 0 Is denoted by r(t) and e(t) Is 
the segment's angular velocity. The respective speeds 
of the control point along the segment and orthogonal 
to It are indicated as x and y. At any time that a 
point on the loop I« not being driven by the control 
segment It will be assumed to be moving Inward along a 
normal to the loop at speed 6. 

Looking ahead. It turns out to be convenient to 
describe the system In terms of the following canon- 
ical control variables. 

6 

u2 = y - p(t,0)e - re 

u, = x - r - p+(t,0) 

(I) 

(2) 

(3) 

(4) 

(5) 

and to position the control  point at the outer end as 
Indicated  In Figure 4.    There u. and u, are Identified 
as the respective speeds of 0 orthogonal to and 
parallel  to the moving segment.    The variables u. and 
u5 give the speeds of the ends of the control  segment 
along the  line of sight. 

Fig. 4 The canonical control variables 

Observe that the change of control variables (IMS) 
can be  Inverted by Integrating that system of  linear 
ordinary differential equations.    Upon assigning 
rectangular coordinates (z.,z7) to the origin of the 
loop it is clear that        '    £ 

UjCOSO u-sinS 

u.slne + u.cose 

(6) 

(7) 

which points out that the motion of 0 is strictly 
gcverned by u., u- and u,. 

In Figure 5 we study the change in the geometry 
or the system during a small time displacement At.    To 
each point on the loop at tin» t with coordinates 
♦ , p(t,4) there is a corresponding point with coordi- 
nates i, p(t+At,«) on the displaced loop.    This 
correspondence produces the induced angles A4, y and 
n indicated in the diagram along with the magnitude 
of the loop displacement paraliad to Itself, Hf> 

Fig. 5 The change In geometry during it 

First we compute 6, the Induced change In p 
Indicated In Figure 5.    Consider the infinitesimal 
right triange generated by the displacements 6, Bit 
and replacement of the  loop at the point 4, p{t+it,*) 
by Its tangent line.   (See Figure 6.) 

Fig. 6 The Infinitesimal triangle 
for computing 6 

Recall that In the elementary differential geometry of 
a curve with polar coordinates 6, r(e)  (not to be 
confused with the control variables) the standard angle 
^ between the radial and tangent line Is given by 

taniji ■   £-,    Thus we compute 
6 

.    /(Mt)2 + iSÄt)i-JSM_i2^ 
V tanS      p(M) V 

«) +pJ(M).(CO 

Next we apply the law of sines In Figure 5 to get 

p(tt?M?.rs - siaiffit» . (<,) p<+.UA*)    " sTO 

By adding and subtracting the appropriate terms this 
last equation can be written as 

: f 

.... „. .j^,.. ,         -l-^--J M^^J^MJL ..   .    ..     „.....„f 
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(10) * sin(n-»-fl»)  A» ["^(t.llA^)  - Mt,»)] 
tT ' sin(Y+i) At [ Aij, J 

. I     r-.in(r|-»-A.t.)       .1      ,.    .,      rp(tfAt.»)-(.(t,»)1 
' Äf [■J|n(YtJ> 'J   '■"•'|)      [ A? "^j 

From ligure 5   It   Is cloar tli.it 

sjn'n-j;Tfl<>) * I as At -» 0. (II) 

Notice that Y - A9 + n = n.    Hence Y+n^nasit^O 
and by the employment of standard trigonometric 
Identities 

I    rsin(n-(»-A(>)       .1       I    rsln(n-»-A»)       .") 
At Lsln(Y+(>) J  " At [sin(n-i»-A6)  "  'J 

2    . he-&i\ [CUS("^- 
= Ät slnl-5—|Uln(n-«- 

Aji+AO 

rr (12) 

"m 'IT ' H"'     fl+tandim n)tan ♦! 
tan  (I Im n-*) 

[l+tan( I im n)tan »I        . . 

fanTTTÜi n)-+an « Jllm(Äf ' W' 

But tan(Ii m n)  = — and 
"3 

u-,coS()i - u/ilni) 
■ •     Aip ,     / J 

At pit,i(i (13) 

both direct conclusions (Jr.iwn from Figure 5.     Substi- 
tution   Into (12) then shows 

[sin(n-i>-A*) 
sln(Y+i) 

[u-slnifi + U,COSI(I] 

 BTT^T  (14) 

as At 

By substituting (8) into (10) and then using (II), (13) 
and (14) to take I Imlts as At ■♦ 0 the partial 
differential equation in the following model Is 
tlerivej. 

The distributed model 

.' [". 
u_cos* - u,sini> 

1». 
- u-sin* - u.cos» - - VP2 + P? 

'      J     P      ♦ 

pO,») = p (♦) o 

p(t,0) = p (0) + /[u.(o) - u.(o)]do 

p(t,2n) = pn{2ii) + ftu.(a)  -  u,(o)]do 

(15) 

(16) 

(17) 

(16) 

The initial function p (•) In (16) Is prescribed. 

The last two boundary conditions arise from the choice 
of positioning the control point (x,y) at the end of 
the control segment; I.e. requiring that 
r(t) '  p(t,2ii) - p(t,0) In the Integrated form of 
r = u4 - u5 and pt(t,0) » Uj - u. which follow from 

(3), (4) and (5). 

Remarks about the model 

The partial differential equation (15) contains a 
nonlinear term which reflects the evasion being taken 

into account.    For zero ovader speed  (0 = 0) that term 
(Jropi out  leaving a quasi-linear equation.     Its role 
in tho damplni) of  Hio solution will  become apparent. 

In th« model u, u2 are distributed controls with 

u., u, strictly boundary controls and u, mixed. The u. 

variables might well be called Input-output variables 
(distinguished from the state-the loop) since from the 
geometric nature of the model It Is clear they can not 
be chosen arbitrarily. The Input-output nature of 
u., u, depends upon whether u., u-, u, are In the mode 

tending to stretch or compress the ends of the loop. 

The model will exhibit memory-loss If the control 
segment Is "backed-up" over the Interior of the loop. 
This Is a sacrifice made to maintain the relative 
simplicity of the model.  It Is also capable of 
exhibiting shock and bifurcation phenomena. 

Game-theoretic applications 

The originally stated goal underlying the deri- 
vation of (I5)-(I8) was a model for generating the 
boundary loop of the searched-and-clear set for 
search In which the field of vlslbilirv at any given 
time Is a line segment and the objects being sought 
have evasive speed bounded by a parameter B. We shall 
point out some other conflict situations to which the 
model applies as well. The control theory of this 
distributed system will be presented In another 
article.1 

Destroyer search 

Suppose that an airplane flying about an aircraft 
carrier has two observers on board each watching out 
one of the side windows for the purpose of detecting 
any enemy destroyers before the destroyers can bring 
the carrier within range of their missiles.  If we 
wish we can assume that the destroyers have superior 
radar or perhaps satellite Information so they would 
maneuver In an attempt to approach within range of 
the carrier while remaining outside the detection 
range of the radar on the carrier and sight of the 
airplane. Using the search path selected by the air- 
plane as Input (I5)-(I8) would generate the time- 
varying region which the carrier could be assured 
contains no destroyers as long as the airplane reports 
no sightings. Clearly the airplane would want to choose 
a path which would expand this region Into a comfortable 
area about the carrier (say larger than the destroyer 
missile range If possible). 

Here we will consider only circular search and 
look for the path with the largest steady state disk. 
That Is we select u.(t) = c., constant, and u,(t) 

(I ■ 2,3) Identically zero In (15). This gives rise to 
the ordinary differential equation for the steady state 

c|% * f-^2 + "J * 0 

which can be Integrated to give 

0 

Equation (20) determines a one-parameter family of 
monotone loops p = p(^) with paramter p(0) s P   ±, 

(19) 

(20) 

(See Figure 7.)   Define A ■ p(2ir) 

of the control  segment, and let the airplane move 

p  , the length 

s 
«,.—*^^. wiiMfe „*- -   
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along at the center of the control  segment with linear 
speed v. 

■. 

Fig.  7 The steady state disk 

Jn view ot the airplane's circular path 

(21) 

which can be substituted Into (20) along with ♦ = 2it 

(22) 

rhs following theorem states that (22)  Implicitly 

defines P. = P  (fi.y) as a function of the parameters 
v   o       o      B 

1 and F . 

Theorem 1.  If ^ Is sufficiently large so that 

V(^)2- I +.ln-,{f7)>|l (23) 

I hen: 

(a) for each A > 0 (22) has a unique solution 
)    > 0.    Moreover (23)  Is necessary for such a 

,olutlon to exist. 

(b) p (A.y) + • as A ■♦ -. 
0        P 

(c) P0(A,y-) -► 0 as A -»O. 

Proof. One can easily verify that (23) Implies 
v  '  Hence the Integral In (22) converges to 

•>. On the other hand If we set 
that f>\. 
zero as p. o 

2(^-1) 
In the Integral and apply (23) then 

we see the Integral takes on a value at least as great 
as 2n.    The existence of the required solution p o 
to (22) then follows from the Intermediate value 
theorem.2 The uniqueness follows from the fact that 
the Integral Is monotone decreasing In p . The 

necessity of (23) Is clear from the monotonlclty and 
the observation that If p were chosen any smaller 
than the above choice the8 the Integral would not be 
defined since the lower limit of Integration would be 
less than one. 

To prove (b) note that If for some sequence 
A. -► ■ the corresponding values of p remained boundtM 
then (22) would be violated since the lower limit of 
Integration would again become less than one. Part 
(c) follows from the observation that If for some 
sequence A. converging to zero the corresponding 
values of p remained bounded away from zero then the 
limits of Integration In (22) would both converge to 
y 
■g and that equation would be violated. 

Remark.    In the destroyer search problem j 

Is the observers' range of visibility.     Theorem I 
Implies that If the search plane can attain or exceed 
the critical speed ratio (about 3.9) then once the 
disk of radius p   computed fron (22) has been cleared 
about the carried the carrier c^n rest assured that 
there are no destroyers within distance p    from It as 

long as the search plane reports no sightings.    More- 
over this is the largest such disk for the given 
search path. 

011  spill clearance 

Many seemingly different conflict situations have 
essentially the same underlying mathematics.    For 
example the model  (I5)-(I8) would apply as well to the 
problem of cleaning up an oil spill on the surface of 
the ocean as It tends to dissipate In all directions 
at a speed 8 or less due to wave action, wind, etc. 
Here we are thinking of a clean-up device which absoi-c , 
a swath of the oil as It Is steered around the peri- 
meter of the spill.    In this problem 6 would be a 
negative parameter.    The results given for the circular 
search problem would apply directly to give the radiu. 
of the largest circular spill that could be contained 
and eventually cleaned up by a piece of equipment of 
speed v and swath width A. 

Forest fire control 

The distributed model   Is well suited for analyzing 
a variety of forest fire problems.    For example con- 
sider the situation wherein an airplane  Is dropping 
fire fighting chemicals about a town to protect  It 
from a surrounding fire.    If the fire had not yet 
contacted the treated region we would set 0 • 0 In 
(I5)-(I8) to predict the extent of the protection 
which could be developed by any available equipment. 
The control segment In this problem would be the cross 
sectional   line of the chemical trail as  It struck the 
surface.    Once the fire reached the treated region a 

r. 11 HI     '-     — MM mimmm 
.    -.■.    . ^m 
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positive value of S would be used to activate the non- 
linear term accounting for the spread of fire across 
the treated area. The spread of an Initially localized 
fire would be modeled using 0 negative. 

Netting fish 

Suppose that a fishing vessel towing a net sights 
a large school of fish swimming near the surface but 
the school quickly submerges from sight upon being 
pursued. If a bound upon the swimming speed of a fish 
is known can the fishing boat catch all the fist In 
Its net? This Is another Interesting question which 
can be asked of our model. Of course we are making 
the assumption that the fish remain at a sufficiently 
shallow depth so that we can keep the problem two 
dimensional. The answer will depend upon the speed of 
the vessel, the size of Its net and the initial 
distribution of fish. 

Example 

Consider the model with 6 = I, u.Ct) = u-(t) = 

UjCt) s 0, u4(t) = u5(t) s -I and Initial function 

{! , 0 <^ ♦ ^ IT 

(24) 
cos * + VA -  sin2*  , " 1 ♦ i 2II 

time t ■ I the Initial loop has been steered down to 
the semi-circular loop indicated in Figure 8. That 
loop can be further shrunk down to a point according 
to the solution 

p(t,*) • < 

0 <.♦ <. |1 

(27) 

2(2 - t) cos* 3n 
f- L* 1 <  2» 

during I 11 <_ 2 by switching the controls to u-(t) = 

u5(t) « I, u4(t) = -I on  I <_ t <_ 2.    Hence the model 
continues to hold In spite of the fact that the origin 
of the loop strikes the loop itself and then sticks 
there. 
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Fig.  8 The  Initial   loop and the 
state at switching 

The partial differential equation then is 

.. -iv^" (25) 

Its solution could be obtained using the method of 
characteristics although it is much easier to obtain 
the following solution directly from the Initial loop 
and the geometric nature of the problem. 

p(t,*) » < 

I - t , 0 < ♦ < ir 

cos* ♦ •(2-t)z - sin2*     ,«i*i2«. 

The solution exists for    0 ^ t ^ 1, 0 <_ ♦ < 2«.    At 

(26) 

. „i.        -.-. 
 - 


